k Alternating Sum

Sameen has:

1. An array having N integers
2. Q friends

His friends are curious about the array. So, each of his friends asks Sameen a question about the array. Every question is described by 3 integers: i, j and k. In reply to a question, Sameen has to say the " k alternating sum" of the subarray starting at position i and ending at position j [1 based indexing]
" k alternating sum" of a subarray starting at position i and ending at position j can be calculated in the following way:
Add the first k numbers[starting from position i$]$

Subtract the second k numbers[starting from position $\mathrm{i}+\mathrm{k}$]

Add the third k numbers[starting from position $\mathrm{i}+2^{*} \mathrm{k}$]
Subtract the fourth k numbers[starting from position $\mathrm{i}+3^{*} \mathrm{k}$]
And so on till adding/subtracting the j-th number...
$(j-i+1)$ will be divisible by k.
[See sample Input/output and explanation section for more details]
Can you help Sameen in answering the questions?

Input

The first line of input contains two integers N and Q. The next line contains N integers, the numbers in the array. Then each of the following Q lines contains 3 integers $i, j \& k$.

Output

For each query output an integer in a separate line, the answer for that query. Queries should be answered in the order given in the input.

Constraints:

$1 \leq \mathrm{k} \leq 100000$
$1 \leq N \leq 100000$
$1 \leq Q \leq 100000$
$-1000000000 \leq$ Value of a number in the array ≤ 1000000000
(j-i+1) will be divisible by k.

Example

Input:
66
41-2-345
252

161
163
166
331
341
Output:

1

Explanation:

In the first query, the subarray is $[1,-2,-3,4]$.
So "2 alternating sum" is equal to: $[1-2]-[-3+4]=-2$
For the second query, we get $[4]-[1]+[-2]-[-3]+[4]-[5]=3$
N.B: Dataset is huge. Use faster I/O method.

