Jumppy and the Grid

Jumppy likes to jump! One day Jumppy went to a park. Jumppy can jump all over the park. The park can be thought of as a square grid with square cells of side length 1. The contents of the grid is either 0 (zero) or X . There are certain things which Jumppy likes. They are:
->Jumppy likes rectangles.
->Jumppy likes X.

Therefore Jumppy will jump only in the rectangles consisting of X. A rectangle is defined as follows:

1) The whole rectangular region should contain only X.
2)The rectangle should be surrounded with 0 or the boundary of the grid.
3)The diagonally adjacent cell(see the definition) of the corner of the rectangle may be X or 0 . (Refer to the first example).

Diagonally adjacent cell: Suppose the given cell has coordinates (p, q) then its diagonally adjacent cells would have coordinates $(p+1, q+1),(p+1, q-1),(p-1, q+1),(p-1, q-1)$.

Now Jumppy is curious how many rectangles are there in the park. Help Jumppy find the number of rectangle.

INPUT:

An integer n denoting the side of the grid.
Then n lines follow each containing a string of n characters describing the square grid. All the characters will be either 0 or X.

OUTPUT:

Output the number of rectangles in the given grid.

CONSTRAINTS:

$0<\mathrm{n}<=1000$

EXAMPLES:

INPUT:
4
XX00
XX00
00XX
00XX

OUTPUT:

2

INPUT:

OUTPUT:

0

INPUT:

5
00000
0XXX0
0X0X0
OXXX0
00000

OUTPUT:

0

INPUT:

3
X0X
0X0
x0x

OUTPUT:

5

EXPLANATION:

Case 1: As can be seen there are two rectangles as highlighted.
Case 2: The grid contains no rectangles because it violets the second condition of definition.
Case 3: The grid contains no rectangles because it violets the first condition of definition.
Case 4: The individual X in this case can be considered as rectangles.

