Submit | All submissions | Best solutions | Back to list |
JHNSN - Johnsons Algorithm |
Johnson's algorithm solves the all-pairs shortest path problem in a weighted, directed graph.
Input
t [number of test graphs] [description of each graph] n [number of nodes, 1<=n<=100] m [number of edges, m>=0] [next the list of edges, one edge per line] u v w [e(u,v) - edge from node u to node v with weight w] [1<=u<=n, 1<=v<=n, -1000<=w<=1000] ... [next edge] [next graph] ...
Output
If the i-th test graph has negative weight cycles, then the answer should be:
graph i no [where 'i' is the number of the graph, 1<=i<=t]
Otherwise you should output the following data:
graph i yes [vector of function h(v)] h1 h2 ... hn+1 [matrix d[u,v], the solution of the all-pairs shortest path problem] d1,1 d1,2 ... d1,n d2,1 d2,2 ... d2,n ... ... ... ... dn,1 dn,2 ... dn,n [if the path doesn't exist, you should output # instead]
Example
Input: 6 2 2 1 2 -2 2 1 1 6 8 1 2 8 1 6 6 6 2 3 2 3 -1 3 6 -2 6 5 -2 5 4 2 3 4 3 4 4 1 2 1 2 3 2 3 4 3 4 1 0 2 0 1 0 2 2 1 2 -1 2 1 0 Output: graph 1 no graph 2 yes 0 0 -1 -3 -5 -3 0 0 8 7 5 3 5 # 0 -1 -3 -5 -3 # 1 0 -2 -4 -2 # # # 0 # # # # # 2 0 # # 3 2 0 -2 0 graph 3 yes 0 0 0 0 0 0 1 3 6 5 0 2 5 3 4 0 3 0 1 3 0 graph 4 yes 0 0 0 0 # # 0 graph 5 yes 0 0 0 graph 6 no
Added by: | Bartłomiej Kowalski |
Date: | 2006-02-05 |
Time limit: | 1.852s |
Source limit: | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel G860) |
Languages: | All except: NODEJS PERL6 VB.NET |
Resource: | http://www.sphere.pl/~deren/gms/03_najkrsc2.pdf |