JHNSN - Johnsons Algorithm

Johnson's algorithm solves the all-pairs shortest path problem in a weighted, directed graph.

Input

t [number of test graphs]

[description of each graph]
n [number of nodes, 1<=n<=100]
m [number of edges, m>=0]
[next the list of edges, one edge per line]
u v w [e(u,v) - edge from node u to node v with weight w]
      [1<=u<=n, 1<=v<=n, -1000<=w<=1000]
...   [next edge] 

[next graph]
...

Output

If the i-th test graph has negative weight cycles, then the answer should be:

graph i no [where 'i' is the number of the graph, 1<=i<=t]

Otherwise you should output the following data:

graph i yes

[vector of function h(v)]
h1 h2 ... hn+1

[matrix d[u,v], the solution of the all-pairs shortest path problem]
d1,1 d1,2 ... d1,n 
d2,1 d2,2 ... d2,n
... ... ... ...
dn,1 dn,2 ... dn,n
[if the path doesn't exist, you should output # instead]

Example

Input:
6

2
2
1 2 -2
2 1 1

6
8
1 2 8
1 6 6
6 2 3
2 3 -1
3 6 -2
6 5 -2
5 4 2
3 4 3

4
4
1 2 1
2 3 2
3 4 3
4 1 0

2
0

1
0

2
2
1 2 -1
2 1 0

Output:
graph 1 no

graph 2 yes

0 0 -1 -3 -5 -3 0

0 8 7 5 3 5
# 0 -1 -3 -5 -3
# 1 0 -2 -4 -2
# # # 0 # #
# # # 2 0 #
# 3 2 0 -2 0

graph 3 yes

0 0 0 0 0

0 1 3 6
5 0 2 5
3 4 0 3
0 1 3 0

graph 4 yes

0 0 0

0 #
# 0

graph 5 yes

0 0

0

graph 6 no


Added by:Bartłomiej Kowalski
Date:2006-02-05
Time limit:1.852s
Source limit:50000B
Memory limit:1536MB
Cluster: Cube (Intel G860)
Languages:All except: NODEJS PERL6 VB.NET
Resource:http://www.sphere.pl/~deren/gms/03_najkrsc2.pdf

© Spoj.com. All Rights Reserved. Spoj uses Sphere Engine™ © by Sphere Research Labs.