Helping Jar Jar Binks

A job has been assigned to Jar Jar Binks, it goes as follows:
There are N spaceships parts, each with a weight of Wi kg. Given a weight W, he has to show how many parts can be used in order to make a ship with a weight of exactly W kg . He has to show all possible solutions, of course if possible.
Everybody knows Jar Jar Binks particularly because of his clumsiness, so you have to help him. Write a program that solves his problem!

Input

There will be several cases, each beginning with two integers $N, Q(1<=N<=60,0<=Q<=10000)$.
Next there will be N positive integers representing the weights of the N spaceship parts ($1<=\mathrm{Wi}<=1000$). Q lines will follow, each one with only one (not necessarily positive) integer W , the total weight of the spaceship.

End of input will be denoted with $\mathrm{N}=0$ and $\mathrm{Q}=0$. This case should not be processed

Output

Print a line with K integers per query in ascending order. They must represent the amount of pieces that can be used to make a spaceship with weight W .

If there is no way to make a spaceship with weight W , output a line with the string "That's impossible!" (quotes to clarify)

Example

Input:

54
12311
3
5
1
9
00
Output:
123
234
1
That's impossible!

Explanation of the query $\mathrm{W}=5$

A spaceship with weight $=5 \mathrm{~kg}$ can be formed with 2,3 and 4 parts, for example:
$2 \mathrm{~kg}+3 \mathrm{~kg}=5 \mathrm{~kg}$
$3 \mathrm{~kg}+1 \mathrm{~kg}+1 \mathrm{~kg}=5 \mathrm{~kg}$
$1 \mathrm{~kg}+1 \mathrm{~kg}+1 \mathrm{~kg}+2 \mathrm{~kg}=5 \mathrm{~kg}$

