Inverse of Recurrence Problem With a Square Root

Given this recurrence formula (be careful, it's in inverse form):
$a_{0}=1 ; a_{n}=\frac{1}{16}\left(1+4 a_{n+1}+\sqrt{1+24 a_{n+1}}\right)$
Given $\mathbf{n}\left(0 \leq \mathbf{n}<2^{64}\right)$ and $\mathbf{m}\left(0<\mathbf{m}<2^{64}\right)$, your task is to compute $\mathbf{a}_{\mathbf{n}}$ modulo \mathbf{m}.
It's guaranteed that $\mathbf{a}_{\mathbf{n}}$ is always an integer.

Input

First line containing an integer $\mathbf{T}\left(0<\mathbf{T} \leq 5 \times 10^{4}\right)$, than \mathbf{T} cases follow.
For each test case there are two integers \mathbf{n} and \mathbf{m}, written in one line, separated by a space.

Output

For each test case, output the required answer: $\mathbf{a}_{\mathbf{n}}$ modulo \mathbf{m}.

Example

```
Input:
10
0}1
110
210
310
1010
100100
10001000
10000 10000
100000 100000
98765432101234567891234567890987654321
```

Output:
1
2
5
5
5
51
251
6251
6251
657422418465782775
Time limit $\sim 7 x$ My program speed: Click here to see my submission history and time record for this problem

