Inverse of Recurrence Problem With a Square Root

Given this recurrence formula (be careful, it's in inverse form):

$$a_0 = 1; \ a_n = \frac{1}{16} \left(1 + 4a_{n+1} + \sqrt{1 + 24a_{n+1}} \right)$$

Given **n** ($0 \le \mathbf{n} < 2^{64}$) and **m** ($0 < \mathbf{m} < 2^{64}$), your task is to compute $\mathbf{a}_{\mathbf{n}}$ modulo **m**.

It's guaranteed that $\boldsymbol{a_n}$ is always an integer.

Input

First line containing an integer **T** ($0 < T \le 5 \times 10^4$), than **T** cases follow.

For each test case there are two integers **n** and **m**, written in one line, separated by a space.

Output

For each test case, output the required answer: $\mathbf{a}_{\mathbf{n}}$ modulo \mathbf{m} .

Example

Input: 10 0 10 1 10 2 10 3 10 10 0 100 100 1000 1000 10000 10000 100000 100000 9876543210123456789 1234567890987654321

Output:

Time limit ~7x My program speed: <u>Click here to see my submission history and time record</u> <u>for this problem</u> See also: Another problem added by Tjandra Satria Gunawan