Smallest Inverse Sum of Divisors

First, we define $\sigma(\mathbf{i})=$ Sum of all positive divisors of \mathbf{i}.
For example: all positive divisors of $60=\{1,2,3,4,5,6,10,12,15,20,30,60\}$
So $\sigma(60)=1+2+3+4+5+6+10+12+15+20+30+60=168$
Now for the task: given an integer \mathbf{n} find smallest integer \mathbf{i} such that $\sigma(\mathbf{i})=\mathbf{n}$.

Input

The first line is an integer $\mathbf{T}(1 \leq \mathbf{T} \leq 100,000)$, denoting the number of test cases. Then, \mathbf{T} test cases follow.

For each test case, there is an integer $\mathbf{n}(1 \leq \mathbf{n} \leq 100,000,000)$ written in one line. (One integer per line.)

Output

For each test case, output the smallest inverse sum of divisors of \mathbf{n}. if \mathbf{n} doesn't have inverse, output-1.

Example

Input:

5
1
16
40
60
168
Output:
1
-1
27
24
60

Time Limit $\approx 2.5^{*}($ My Program Top Speed)

See also: Another problem added by Tjandra Satria Gunawan

