I LOVE Kd-TREES

You've been invited to the "I-Love-Kd-trees" annual con, but first, you have to show them that you really know about great data structures, so they give you an easy task!

You are given a list of \mathbf{N} numbers and \mathbf{Q} queries, each query consist of three integers: $\boldsymbol{k}, \boldsymbol{i}$ and \boldsymbol{I};let \mathbf{d} be the \mathbf{k}-th smallest element until the index \mathbf{i} (i.e. if the first $i+1$ elements were sorted in non-descending way, \mathbf{d} would be the element at index $\mathbf{k - 1}$). Then, the answer to each query is the index of the l-th occurrence of \mathbf{d} in the array. If there's no such index, the answer is $\mathbf{- 1}$. You have to consider that all indexes are counted starting with $\mathbf{0}$.

Input

Input consists of one test case.
The first line contains two integers, $\mathbf{N}\left(1 \leq N \leq 10^{5}\right)$ and $\mathbf{Q}\left(1 \leq \mathbf{Q} \leq 10^{5}\right)$.
The next line contains \mathbf{N} possibly distinct integers $\mathbf{a}_{\mathbf{i}}\left(-10^{9} \leq \mathrm{a}_{\mathbf{i}} \leq 10^{9}\right)$.

Then \mathbf{Q} lines follow, each of those contains three integers \boldsymbol{k}, \boldsymbol{i} and $\boldsymbol{I} .(0<\mathrm{k} \leq \mathrm{i}<\mathrm{N}, 1 \leq \mathrm{I} \leq \mathrm{N})$.

Output

For each query (in the same order as the input) output a single line with the answer to that query.

Example

Input:
106
2671812326
242
263
141
142
342
332
Output:

6
-1
3
5
9
9

Explanation of the first query:

The elements until index 4 are $[2,6,7,1,8]$ so the 2 nd smallest element is 2 , and your asked for the index of it's 2 nd ocurrency, so the answer is 6 .

