Count Pairs

Given a undirected graph with n veritces and m edges. Your taks is count the number of distinct pairs (u, v) that there is exist a path with length exactly 2 from u to v. Another mean, with each pair (u, v), we could find a vertex that we have an edge (u, t) and (t, v). The input set may be contains multiple edge between any vertex and not consider to connected.

Input

- First line: $n, m\left(1<=n, m<=10^{\wedge} 5\right)$.
- m following line: $\mathrm{u}, \mathrm{v}(1<=\mathrm{u}, \mathrm{v}<=\mathrm{n})$.

Output

The number of distinct pairs.

Example

Input:

54
21
15
31
43
Output:
4
Note: we have (1, 4), (2, 3), (2, 5), (3, 5)

