Find Lexicographically Smallest Permutation

You are given n numbers a1, a2, ... an. You have to permute the numbers in such a way that resulting permutation should be lexicographically smallest. But there is a problem, you can not swap every pair of numbers. You can only swap the position i and j if they are good position. You will be given m pairs of i and j 's which will denote good positions.

So complying to restrictions posed here, find the lexicographically smallest permutation of a1, a2, , , an.

Definition: (a1, a2, ... an) is lexicographically smaller than (b1, b2, ... bn) if first index i where ai and bi differs, ai < bi satisfies.
eg. $(1,2,3,4)$ is smaller than $(2,1,3,4)$

Input

T : number of test cases ($\mathrm{T}<=10$)
Next Line will contain n and $m .\left(1<=n<=10^{\wedge} 3\right.$ and $0<=m<=m i n\left(n *(n-1) / 2,10^{\wedge} 5\right)$.
Next Line will contains a1, a2, ... an. (a[i] >= 1 \& \& $a[i]<=10^{\wedge} 6$)
For next m lines, each line will contain i, j separated by space which will denote that you can swap ai and aj.

Output

For each test case, output n numbers representing the permutation of $\mathrm{a} 1, \mathrm{a} 2, \ldots$ an according to problem statement.

Example

Input:

2
31
321
23
42
2431
13
34

Output:

312
1423

