Sub array Sum1

Let $A=\{a 0, a 1, a 2, a 3, \ldots ., a n-1\}$ be an array. We define a recursive operation Op on array A as follows

$$
\begin{aligned}
\operatorname{Op}(A) & =\operatorname{Op}(\operatorname{two}(A))+\operatorname{Op}(o n e(A))+O p(z e r o(A)) \text { if } n>1 \\
& =A \text { otherwise }
\end{aligned}
$$

Here, zero $(A)=\{a 0, a 3, a 6, .$.$\} i.e. an array formed by elements whose indices are divisible by 3$. Similarly, one $(A)=\{a 1, a 4, a 7, a 10, \ldots\}$ and $t w o(A)=\{a 2, a 5, a 8, a 11 .$.$\} . Also, +$ is the concatenation operation.

For example, if $A=\{0,1,2,3,4,5\}$. Then $\operatorname{Op}(A)$ will be calculated as

$$
\begin{aligned}
O p(A) & =O p(\{2,5\})+O p(\{1,4\})+O p(\{0,3\}) \\
& =O p(\{ \})+O p(\{5\})+O p(\{2\})+O p(\{ \})+O p(\{4\})+O p(\{1\})+O p(\{ \})+O p(\{3\})+O p(\{0\}) \\
& =\{5,2,4,1,3,0\}
\end{aligned}
$$

We define an query on an array B as taking the sum of all elements bk where $\mathrm{i} \leq \mathrm{k} \leq \mathrm{j}$ and $\mathrm{I} \leq \mathrm{bk} \leq$ r.

Input

First line contains size n of array $C .\left(n \leq 10^{\wedge} 5\right)-$
Second line contains n integers c0, c1, c2, ...cn-1. ($\left.|c i|<10^{\wedge} 6\right)-$
Third line contains q, number of queries. $\left(q \leq 10^{\wedge} 5\right)$ -
Next q lines contains four integers $i, j, l, r .\left(0 \leq i<n, i \leq j<n, l=-10^{\wedge} 6-1, r=10^{\wedge} 6+1\right)$
Note that I,r are fixed

Output

You have to output q integers corresponding to each query on a separate line.

Example

Input:
4
1-154
1
0 3-1000001 1000001

Output:

