Hamiltonian Cycles

You are given a complete undirected graph with \mathbf{n} nodes numbered from 1 to \mathbf{n}. You are also given \mathbf{k} forbidden edges in this graph.

You are asked to find the number of Hamiltonian cycles in this graph that don't use any of the given \mathbf{k} edges. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A cycle that contains the same edges is only counted once. For example, cycles 12341 and 14321 and 23412 are all the same, but 13241 is different.

Input

The first line of input gives the number of cases, $\mathbf{N}(\leq 10)$. \mathbf{N} test cases follow. The first line of each test case contains two integers, $\mathbf{n}(\leq 300)$ and $\mathbf{k}(\leq 15)$. The next \mathbf{k} lines contain two integers each, representing the vertices of a forbidden edge. There will be no self-edges and no repeated edges.

Output

For each test case, output one line containing "Case \#X: Y", where \mathbf{X} is the case number (starting from 1) and \mathbf{Y} is the number of Hamiltonian cycles that do not include any of those \mathbf{k} edges. Print your answer modulo 9901.

Example

Input:
2
41
12
84
12
23
45
56

Output:

Case \#1: 1
Case \#2: 660

