## Endless Knight

In the game of chess, there is a piece called the knight. A knight is special -- instead of moving in a straight line like other pieces, it jumps in an "L" shape. Specifically, a knight can jump from square (r1, c1) to (r2, c2) if and only if (r1$\mathrm{r} 2)^{2}+(\mathrm{c} 1-\mathrm{c} 2)^{2}=5$.

In this problem, one of our knights is going to undertake a chivalrous quest of moving from the top-left corner (the (1, 1) square) to the bottom-right corner (the (H,W) square) on a gigantic board. The chessboard is of height $\mathbf{H}$ and width W.

Here are some restrictions you need to know.

- The knight is so straightforward and ardent that he is only willing to move towards the right and the bottom. In other words, in each step he only moves to a square with a bigger row number and a bigger column number. Note that, this might mean that there is no way to achieve his goal, for example, on a 3 by 10 board.
- There are R squares on the chessboard that contain rocks with evil power. Your knight may not land on any of such squares, although flying over them during a jump is allowed.

Your task is to find the number of unique ways for the knight to move from the top-left corner to the bottom-right corner, under the above restrictions. It should be clear that sometimes the answer is huge. You are asked to output the remainder of the answer when divided by 10007, a prime number.

## Input

Input begins with a line containing a single integer, $\mathbf{N} . \mathbf{N}$ test cases follow.
The first line of each test case contains 3 integers, $\mathbf{H}, \mathbf{W}$, and $\mathbf{R}$. The next $\mathbf{R}$ lines each contain 2 integers each, $\mathbf{r}$ and $\mathbf{c}$, the row and column numbers of one rock. You may assume that $(1,1)$ and $(\mathbf{H}, \mathbf{W})$ never contain rocks and that no two rocks are at the same position.

## Output

For each test case, output a single line of output, prefixed by "Case \#X: ", where $\mathbf{X}$ is the 1 -based case number, followed by a single integer indicating the number of ways of reaching the goal, modulo 10007.

## Limits

$1 \leq \mathbf{N} \leq 100$
$0 \leq \mathbf{R} \leq 10$
$1 \leq W \leq 10^{8}$
$1 \leq \boldsymbol{H} \leq 10^{8}$
$1 \leq r \leq H$
$1 \leq \mathrm{c} \leq \mathrm{W}$

## Example

## Input:

5
110
441
21
330
7102

12
71
441
32
Output:
Case \#1: 1
Case \#2: 2
Case \#3: 0
Case \#4: 5
Case \#5: 1

