Identity crisis

For every given number n we define $x(n)$ as distance from n to the first number after n in form of 99...99. For example $x(100)=899, x(45)=54$, etc. Given several n numbers you have to find the Z_{p}, where $x(n) \equiv n \bmod p$.

Input

First line of input icontains one number $T(T<20)$ - the number of test cases. In each of the next T lines contains one number each to represent $n(0<n<30000000)$.

Output

In each line you have to write one number - the least $p>1$ that $x(n) \equiv n \bmod p$. If there is no such p the line should contain -1.

Example

Input:
2
234

5

Output:
3
-1
Explanation:
$x(234)=765.765 \bmod 3=0,234 \bmod 3=0=>765 \equiv 234 \bmod 3$

