Hidden Triangle

Assume that each 'o' or '1' in the array represents a point on a plane and the distance between each pair of neighbouring points row wise or column wise is unity. Assume further that every neighbouring pair of 1 's, row wise, column wise or diagonally is connected by a line segment. Two line segments emerging from a point, either join together to form a longer line segment or form an angle of $45^{\circ}, 90^{\circ}$ or 135°, thus forming right-angled isosceles triangles. The existence of hidden right-angled isosceles triangles in an array is illustrated in the figure below.

Input

Input consists of multiple test cases.
For each test case the first line gives three integers: the case number k, the number of rows m and the number of columns n of the given array. A space appears between two neighbouring integers.

Each of the next m lines gives a string of 0 's and 1 's of length n; the i-th line gives the i-th row of the array.

Input terminates with a value zero for case number k.

Output

For each test case, display output in one line. The line contains the case number k and the area of the largest right-angled isosceles triangle hidden in the array. The area is a real number with one digit after the decimal point. If a triangle does not exist then output ` 0.0 ' as the area.

Sample Input

133
101
100
101
246
001001
010101
111111
000001
0

Sample Output

10.0
24.0

