Card Game

John is playing a game with his friends. The game's rules are as follows: There is deck of \mathbf{N} cards from which each person is dealt a hand of \mathbf{K} cards. Each card has an integer value representing its strength. A hand's strength is determined by the value of the highest card in the hand. The person with the strongest hand wins the round. Bets are placed before each player reveals the strength of their hand.

John needs your help to decide when to bet. He decides he wants to bet when the strength of his hand is higher than the average hand strength. Hence John wants to calculate the average strength of ALL possible sets of hands. John is very good at division, but he needs your help in calculating the sum of the strengths of all possible hands.

Problem

You are given an array a with $\mathbf{N} \leq 10000$ different integer numbers and a number, \mathbf{K}, where $\mathbf{1} \leq \mathbf{K} \leq \mathbf{N}$. For all possible subsets of a of size \mathbf{K} find the sum of their maximal elements modulo 1000000007.

Input

The first line contains the number of test cases \mathbf{T}, where $1 \leq \mathrm{T} \leq 25$

Each case begins with a line containing integers \mathbf{N} and \mathbf{K}. The next line contains \mathbf{N} space-separated numbers $\mathbf{0} \leq \mathbf{a}$ [$\mathbf{i}]$ ≤ 2000000000, which describe the array a.

Output

For test case i, numbered from 1 to \mathbf{T}, output "Case \#i: ", followed by a single integer, the sum of maximal elements for all subsets of size K modulo 1000000007.

Example input

5
43
3628
52
1020304050
64
012358
22
10691122

105
10386102571043210087103811003510167102061034710088

Example output

Case \#1: 30

Case \#2: 400

Case \#3: 103
Case \#4: 1122
Case \#5: 2621483

