F - Interesting Ranges

A positive integer is a palindrome if its decimal representation (without leading zeros) is a palindromic string (a string that reads the same forwards and backwards). For example, the numbers 5, 77, 363, 4884, 11111, 12121 and 349943 are palindromes.

A range of integers is interesting if it contains an even number of palindromes. The range $[L, R]$, with $L \leq R$, is defined as the sequence of integers from L to R (inclusive): ($L, L+1, L+2, \ldots R-1, R$). L and R are the range's first and last numbers.

The range $\left[L_{1}, R_{1}\right]$ is a subrange of $[L, R]$ if $L \leq L_{1} \leq R_{1} \leq R$. Your job is to determine how many interesting subranges of $[L, R]$ there are.

Input

The first line of input gives the number of test cases, T. T test cases follow. Each test case is a single line containing two positive integers, \mathbf{L} and \mathbf{R} (in that order), separated by a space.

Output

For each test case, output one line. That line should contain "Case \#x: y ", where x is the case number starting with 1 , and y is the number of interesting subranges of $[L, R]$, modulo 1000000007.

Limits

$1 \leq \mathbf{T} \leq 120$
Small dataset: $1 \leq \mathbf{L} \leq \mathbf{R} \leq 10^{13}$
Large dataset; $1 \leq \mathbf{L} \leq \mathbf{R} \leq 10^{100}$

Sample

Input:

3
12
17
12110

Output:

Case \#1: 1
Case \#2: 12
Case \#3: 2466

