Graph

Given an undirected graph with \mathbf{n} nodes and \mathbf{m} weighted edges, every node having one of two colors - black (denoted as 0) and white (denoted as 1). You are to perform \mathbf{q} operations of two kinds:

1. C x : Change the x-th node's color. A black node should be changed into a white node, and vice versa.
2. QAB: Find the sum of weight of edges whose two end points of color A and B. A and B can be either 0 or 1 .

Input

The first line contains two integers $\mathbf{n}\left(1<=\mathbf{n}<=10^{\wedge} 5\right)$ and $\mathbf{m}\left(1<=\mathbf{m}<=10^{\wedge} 5\right)$ specified above.
The second line contains \mathbf{n} integers, the i-th of which represents the color of the i-th node, 0 for black and 1 for white.

The following m lines represent edges. Each line has three integer u, v and $w(1<=u, v<=n, u!=v)$, indicating there is an edge of weight w between u and v. w fits into 32 -bit signed integer.

The next line contains only one integer $\mathbf{q}\left(1<=\mathbf{q}<=10^{\wedge} 5\right)$, the number of operations.
The following \mathbf{q} lines - operations mentioned above. See samples for detailed format.

Output

For each \mathbf{Q} query, print one line containing the desired answer.See samples for detailed format.

Example

Input:

43
0000
121
232
343
4
Q 00
C 2
Q 00
Q 01
Output:
6
3
3
Input:
43

Output:
3
0
4

This problem has a somewhat strict source limit and time limit.

