Irreducible polynomials over GF2

Find the number of degree \mathbf{n} irreducible polynomials over $\mathrm{GF}(2)$. For example: for $\mathrm{n}=1$ there are two such polynoms: x and $x+1$. For $\mathbf{n}=2$ there is only one: $x^{2}+x+1$. Note that in $R[x]$ the polynom $x^{2}+1$ is irreducible, but not over $G F(2)$, because $x^{2}+1=(x+1)^{*}(x+1)$

Input

A single positive integer \mathbf{n}, where $\mathbf{n}<500000$

Output

Output the answer for \mathbf{n}.

Example

Input:

201
Output:
15989433276208858463104100421305100522608250813995004946218
Input:
1
Output:
2
Input:
2
Output:
1

Input:
3
Output:
2

