Your Rank is Pure

Pontius: You know, I like this number 127, I don't know why.
Woland: Well, that is an object so pure. You know the prime numbers.
Pontius: Surely I do. Those are the objects possessed by our ancient masters hundreds of years ago. Oh, yes, why then? 127 is indeed a prime number as I was told.
Woland: Not... only... that. 127 is the 31 st prime number; then, 31 is itself a prime, it is the 11th; and 11 is the 5th; 5 is the 3 rd; 3 , you know, is the second; and finally 2 is the 1st.
Pontius: Heh, that is indeed... purely prime.
The game can be played on any subset S of positive integers. A number in S is considered pure with respect to s if, starting from it, you can continue taking its rank in s, and get a number that is also in S , until in finite steps you hit the number 1 , which is not in S .

When \mathbf{n} is given, in how many ways you can pick s, a subset of $\{2,3, \ldots, n\}$, so that \mathbf{n} is pure, with respect to s ? The answer might be a big number, you need to output it modulo 100003.

Input

The first line of the input gives the number of test cases, T. T lines follow. Each contains a single integer \mathbf{n}.

Output

For each test case, output one line containing "Case \#x: y ", where x is the case number (starting from 1) and y is the answer as described above.

Limits

$\mathrm{T} \leq 200$.
$2 \leq \mathbf{n} \leq 500$.

Sample

Input:

2
5
6

Output:

Case \#1: 5
Case \#2: 8
(All problem statements, input data and contest analyses from google code jam are licensed under the Creative Commons Attribution License.)

