Easy GCD

We call a sequence of n non-negative integers \mathbf{A}, awesome if there exists some positive integers $\mathbf{x}>\mathbf{1}$ such that each element $\mathbf{A i}$ in $A($ where $\mathbf{0}<=\mathbf{i}<\mathbf{n}$) is evenly divisible by \mathbf{x}. Recall that \mathbf{a} evenly divides \mathbf{b} if there exists some integers \mathbf{c} such that $\mathbf{b}=\mathbf{a}^{\star} \mathbf{c}$.

Given an awesome sequence, \mathbf{A} and a positive integer \mathbf{k}, find and print the maximum integer \mathbf{L}, which satisfies the following conditions:

1. $0<=L<=K$
2. $A \cup\{L\}$ is also awesome. (\mathbf{U} is union operator)

Input:

The first line contains the integer t denoting the number of test cases. The next line contains two space-separated positive integers, \mathbf{n} (length of the sequence \mathbf{A}) and \mathbf{k} (the upper bound of answer L).

The third line contains \mathbf{n} space separated positive integers describing the elements of \mathbf{A}.

Output:

For each test case, Print the value of \mathbf{L} in a single line (where \mathbf{L} is the maximum integer $<=\mathrm{k}$ and $A \cup\{L\}$ is also awesome). As 0 is evenly divisible by any $\mathbf{x}>1$, there will always be an answer.

Constraints:

$1<=\mathrm{t}<=12$
$1<=\mathrm{n}<=100000$
$1<=\mathrm{k}<=1000000000$
$1<=\mathrm{Ai}<=1000000000$

Sample Input	Sample Output
2	4
35	0
264	

