Fight with functions

English

Multiplicative functions are defined as functions such that $f\left(m^{*} n\right)=f(m)^{*} f(n)$. Now, we put an extra constraint on multiplicative functions that if m and n are coprime, then $f(m)$ and $f(n)$ are also coprime. Additionally it is also provided that $f(1)=1 . f(x)$ is defined for positive integers and it returns positive integers.

Now, you are provided with some x and corresponding $f(x)$. Your task is to find out , if you can uniquely determine the value of $f(y)$ given y and if yes, find the value.

Input

The first line of input contains a number representing the number of test cases. For each test case, the first line contains a number N representing the number of ($x, f(x)$) pairs to be provided. N Lines follow, each line containing a pair of space separated numbers : the first one corresponding to x and second one to $f(x)$. Next line contains q, the number of queries. q lines follow, each containing a number y.

Output

For each test case output q lines, one corresponding to each query. The output should contain "YES $f(y)$ " where $f(y)$ is replaced by the integer denoting $f(y)$ with no leading zeroes if given the data, we can uniquely determine $\mathrm{f}(\mathrm{y})$, or "NO" if the input data is inconsistent with the properties of the function or with the given information provided about the function, we can not uniquely determine $f(y)$.

Example

Input:

3
3
22
32
719
1
7
1

Constraints

Dataset 1: The number of test cases are less than 20. $N \leq=50 . x$ and $f(x) \leq 10^{\wedge} 50 . x$ and $f(x)$ do not have a prime factor greater than 100005.

The number of queries are less than or equal to 50 . Each number in the query is less than $10^{\wedge} 50$.
You are guaranteed that if the answer is unique, it contains less than 400 digits. Time limit: 12 s

