Funny Modular Sequence

Lets define a funny modular sequence as a sequence such that $a_{1} \times a_{2}=1(\bmod p), a_{2} \times a_{3}=1$ $(\bmod p) \ldots, a_{n-1} \times a_{n}=1(\bmod p)$. Also, $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ must be less than p and greater than or equal to 0 . Given one element, $\mathbf{a}_{\mathbf{1}}$, find the sum of the entire funny modular sequence of length \mathbf{n}. If, for any a_{i}, where $i>=1$, there exists no a_{i+1} such that $a_{i} x a_{i+1}=1(\bmod p)$, output -1 .

Note: p is not necessarily prime.

Input:

The first line contains \mathbf{T}, the number of test cases.
\mathbf{T} lines follow, each containing \mathbf{a}_{1}, p, and \mathbf{n}.

Output:

For each test case, output one line, the required sum.

Constraints:

$1<=T<=10^{5}$
$1<=\mathrm{a}_{1}<=10^{5}$
$1<=\mathrm{n}<=10^{9}$
$a_{1}<p<=10^{9}$

Sample Input:

2
232
372

Sample Output:

4
8

Explanation

In the first test case, the funny modular sequence will be 2 , 2 , which has a sum of 4 .
In the second test case, it will be 3,5 , which has a sum of 8 .

