Funny Modular Sequence

Lets define a funny modular sequence as a sequence such that $a_1 \ge a_2=1 \pmod{p}$, $a_2 \ge a_3=1 \pmod{p}$. $a_{n-1} \ge a_n = 1 \pmod{p}$. Also, a_1 , a_2 , a_3 , ... a_n must be less than p and greater than or equal to 0. Given one element, a_1 , find the sum of the entire funny modular sequence of length n. If, for any a_i , where $i \ge 1$, there exists no a_{i+1} such that $a_i \ge a_{i+1} = 1 \pmod{p}$, output -1.

Note: p is not necessarily prime.

Input:

The first line contains **T**, the number of test cases. **T** lines follow, each containing **a**₁, **p**, **and n**.

Output:

For each test case, output one line, the required sum.

Constraints:

 $1 \le T \le 10^{5}$ $1 \le a_{1} \le 10^{5}$ $1 \le n \le 10^{9}$ a_{1}

Sample Input:

2

232

372

Sample Output:

4

8

Explanation

In the first test case, the funny modular sequence will be 2, 2, which has a sum of 4.

In the second test case, it will be 3, 5, which has a sum of 8.