Fibonacci recursive sequences (hard)

Leo searched for a new fib-like problem, and ...
it's not a fib-like problem that he found !!! Here it is.
Let FIB the Fibonacci function :
$\mathrm{FIB}(0)=0 ; \mathrm{FIB}(1)=1$
and
for $\mathrm{N}>=2 \mathrm{FIB}(\mathrm{N})=\mathrm{FIB}(\mathrm{N}-1)+\mathrm{FIB}(\mathrm{N}-2)$
Example : we have $\mathrm{FIB}(6)=8$, and $\mathrm{FIB}(8)=21$.
Let $\mathrm{F}(\mathrm{K}, \mathrm{N})$ a new function:
$F(0, N)=N$ for all integers N.
$F(K, N)=F(K-1, F I B(N))$ for $K>0$ and all integers N.
Example : $\mathrm{F}(2,6)=\mathrm{F}(1, \mathrm{FIB}(6))=\mathrm{F}(0, \mathrm{FIB}(\mathrm{FIB}(6)))=\mathrm{FIB}(\mathrm{FIB}(6))=\mathrm{FIB}(8)=21$

Input

The input begins with the number T of test cases in a single line.
In each of the next T lines there are three integers: $\mathrm{K}, \mathrm{N}, \mathrm{M}$.

Output

For each test case, print $F(K, N)$, as the answer could not fit in a 64bit container, give your answer modulo M.

Example

Input:

3
451000
341000
261000

Output:

5
1
21

Constraints

$1<=T<=10^{\wedge} 3$
$0<=K<=10^{\wedge} 18$
$0<=N<=10^{\wedge} 18$
$2<=M<=10^{\wedge} 18$
$\mathrm{K}, \mathrm{N}, \mathrm{M}$ are uniform randomly chosen.
You would perhaps have a look, before, at the medium edition with easier constraints.

Edit(12///2015) My old Python code now ends in 2.19 s using PY3.4 and cube cluster.

