Fibonaccibonacci (easy)

Leo would like to play with some really big numbers, OK...
Let FIB the Fibonacci function :
$\mathrm{FIB}(0)=0 ; \operatorname{FIB}(1)=1$
and
for $\mathrm{N}>=2 \mathrm{FIB}(\mathrm{N})=\mathrm{FIB}(\mathrm{N}-1)+\mathrm{FIB}(\mathrm{N}-2)$
Example : we have $\operatorname{FIB}(6)=8$, and $\operatorname{FIB}(8)=21$, so $\operatorname{FIB}(F I B(6))=21$

Input

The input begins with the number T of test cases in a single line. In each of the next T lines there are an integer N .

Output

For each test case, print FIB(FIB(N)), as the answer could not fit in a 64bit container, give your answer modulo 1000000007.

Example

Input:

3
0
5
6
Output:
0
5
21

Constraints

$1<=T<=10^{\wedge} 4$
$0<=N<=10^{\wedge} 100$
Time limit is set to allow (sub-optimal) 500B of python3 code to get AC.
A near optimal solution is within 0.02 and 0.04 s with a fast language, and around 1 s in Python2 without psyco.

Edit(20/l/2015) With Cube cluster, it is not hard to get 0.0 s with fast languages, and my old code ended in 0.08s using PY3.4.

