## Fibonacci Power Sum

The fibonacci series is defined as below:
$f i b(0)=0, f i b(1)=1$
fib $(n)=f i b(n-1)+f i b(n-2)$ for $n>1$
Given three integers $\mathbf{N}, \mathbf{C}$ and $\mathbf{K}$, find the summation of the following series:
$f i b\left(0^{*} C\right)^{\wedge} K+f i b\left(1^{*} C\right)^{\wedge} K+f i b\left(2^{*} C\right)^{\wedge} K+f i b\left(3^{*} C\right)^{\wedge} K+\ldots+f i b\left(N^{*} C\right)^{\wedge} K$
Since the answer can be huge, output it modulo 1000000007

## Input

The first line contains an integer $\mathbf{T}$, denoting the number of test cases. Each test case contains three space separated integers in the order: $\mathbf{N}, \mathbf{C}$ and $\mathbf{K}$.

## Constraints

- $1 \leq \mathrm{T} \leq 100$
- $0 \leq N \leq 10^{15}$
- $1 \leq \mathrm{C}, \mathrm{K} \leq 10$


## Output

For each test case, output a single line in the format "Case $X$ : $Y$ " without the quotes. Here, $\mathbf{X}$ is the case number and $\mathbf{Y}$ is the desired answer denoting the sum of the series.

## Example

Input:
5
1011
522
334
100000000779
99696969696969696

## Output:

Case 1: 143
Case 2: 3540
Case 3: 1340448
Case 4: 880410497
Case 5: 689328397

## Challenge

Try the harder version here:
liouzhou 101-FIBPSUM2

