Fibonacci extraction Sum

Some people may found FIBOSUM a too easy problem. We propose here a useful variation.

Fib is the Fibonacci sequence:
For any positive integer i : if $\mathrm{i}<2 \operatorname{Fib}(\mathrm{i})=\mathrm{i}$, else $\operatorname{Fib}(\mathrm{i})=\operatorname{Fib}(\mathrm{i}-1)+\operatorname{Fib}(\mathrm{i}-2)$

Input

The first line of input contains an integer \boldsymbol{T}, the number of test cases.
On each of the next \boldsymbol{T} lines, your are given tree integers $\boldsymbol{c}, \boldsymbol{k}, \boldsymbol{N}$.

Output

Print Sum(Fib(ki+c) for in [1..N]).

As the answer could not fit in a 64-bit container, just output your answer modulo 1000000007.

Example

Input:
1
352
Output:
254

Explanations

Index-1 Fib sequence : $1,1,2,3,5,8,13, \mathbf{2 1}, 34,55,89,144,233,377,610,987, \ldots$
We want the $5^{*} 1+3=8^{\text {th }}$ and $5^{*} 2+3=13^{\text {th }}$ ones, thus the answer is $21+233=254$.

Constraints

$0<\mathrm{T}<=60606$
$0<=c<k<=2^{\wedge} 15$
$0<N<=10^{\wedge} 18$
The numbers $\boldsymbol{c}, \boldsymbol{k}, \boldsymbol{N}$ are uniform randomly chosen in their range.
For your information, constraints allow 1.3 kB of Python3 code to get AC in 0.30 s , it could be hard.
A fast C-code can get AC around 0.01s. (Timing edited 2017-02-11, after compiler changes)
Warning: Here is Cube cluster, you can try the classical edition (clone with Pyramid cluster).
Have fun ;-)

