Fibonacci With a Square Root

FIBONACCI is the recursive sequence that is given by: $F(n)=F(n-1)+F(n-2)$ with $F(0)=0$ and $F(1)=1$.

In this problem we define FIBOSQRT that is given by: $\mathrm{Fs}(\mathrm{n})=\mathrm{Fs}(\mathrm{n}-1)+\mathrm{Fs}(\mathrm{n}-2)+2^{*} \mathrm{SQRT}(3+\mathrm{Fs}(\mathrm{n}-$ $\left.1)^{*} \mathrm{Fs}(\mathrm{n}-2)\right)$ with $\mathrm{Fs}(0)$ and $\mathrm{Fs}(1)$ are given in the input file.

It's guaranteed that $\operatorname{SQRT}\left(3+F s(n-1)^{*} F s(n-2)\right)$ is always an integer. (3) I've proved it by math theorem.

Now your task is to find Fs(n). Since the number can be big you have to find the result mod M.

Input

The first line is an integer $\mathrm{T}(1 \leq \mathbf{T} \leq 111,111)$, denoting the number of test cases. Then, T test cases follow.

For each test case, there are four integers $\mathbf{F s}(\mathbf{0}), \mathbf{F s}(\mathbf{1})\left(1 \leq \mathbf{F s}(\mathbf{0}) \leq \mathbf{F s}(\mathbf{1})<10^{6}\right), \mathbf{M}\left(1 \leq \mathbf{M}<10^{9}\right)$, and $\mathbf{n}\left(0 \leq \mathbf{n}<10^{18}\right)$ written in one line, separated by space.

Output

For each test case, output $\mathrm{Fs}(\mathbf{n}) \bmod \mathbf{M}$.

Example

Input:
2
11105
231006

Output:

4
82

Explanation:

Case \#1:

- $\mathrm{Fs}(0)=1$
- $\mathrm{Fs}(1)=1$
- $\mathrm{Fs}(2)=1+1+2^{*} \operatorname{SQRT}\left(3+1^{*} 1\right)=6$
- $\mathrm{Fs}(3)=6+1+2^{*} \operatorname{SQRT}\left(3+6^{*} 1\right)=13$
- $\mathrm{Fs}(4)=13+6+2^{*} \operatorname{SQRT}\left(3+13^{*} 6\right)=37$
- $\mathrm{Fs}(5)=37+13+2^{*} \operatorname{SQRT}\left(3+37^{*} 13\right)=94$

The answer is: $94 \bmod 10=4$.

Case \#2:

- $\mathrm{Fs}(0)=2$
- $\mathrm{Fs}(1)=3$
- $\mathrm{Fs}(2)=3+2+2^{*} \operatorname{SQRT}\left(3+3^{*} 2\right)=11$
- $\mathrm{Fs}(3)=11+3+2 * \operatorname{SQRT}(3+11 * 3)=26$
- $\mathrm{Fs}(4)=26+11+2^{*} \operatorname{SQRT}(3+26 * 11)=71$
- $\mathrm{Fs}(5)=71+26+2^{*} \operatorname{SQRT}\left(3+71^{*} 26\right)=183$
- $\mathrm{Fs}(6)=183+71+2^{*} \operatorname{SQRT}\left(3+183^{*} 71\right)=482$

The answer is: $482 \bmod 100=82$.

Notes

File \#1: More than 100,000 random test cases (test your program speed (:)
File \#2: Less than 10 test cases (tricky test cases that might give you WA (:)

Time Limit \approx 8*(My Program Top Speed $)^{\text {(M }}$

Warning: large Input/Output data, be careful with certain languages
See also: Another problem added by Tjandra Satria Gunawan

