Fibonacci Polynomial

Problem description.

The Fibonacci numbers defined as $f(n)=f(n-1)+f(n-2)$ where $f 0=0$ and $f 1=1$.

We define a function as follows $D(n, x)=x+x^{\wedge} 2+2 x^{\wedge} 3+3 x^{\wedge} 4+5 x^{\wedge} 5+8 x^{\wedge} 6+\ldots+f(n) x^{\wedge} n$
Given two integers n and x, you need to compute $D(n, x)$ since the output can be very large output the result modulo 1000000007 (1e9+7) .

Input

Input description.

- The first line of the input contains an integer \mathbf{T} denoting the number of test cases. The description of \mathbf{T} test cases follows.
- The first line of each test case contains two integers \mathbf{n} and \mathbf{x} as described above.

Output

Output description.

- For each test case, output $\mathbf{D}(\mathrm{n}, \mathrm{x}) \% 1000000007$ in a seperate line.

Constraints

Should contain all the constraints on the input data that you may have. Format it like:

- $1 \leq T \leq 1000$
- $0 \leq n \leq 10^{\wedge 15}$
- $0 \leq x \leq 10^{\wedge 15}$

Example

Input:

1
711
Output:
268357683

Explanation

$D(7,11)=11+11^{\wedge} 2+2\left(11^{\wedge} 3\right)+3\left(11^{\wedge} 4\right)+5\left(11^{\wedge} 5\right)+8\left(11^{\wedge} 6\right)+13\left(11^{\wedge} 7\right)=268357683$

