Factor y Hell

Factorial(N) in base B : The number of trailing zeros.

Factorial(19) in base $9 \times 10^{\wedge} 0=9$ can be written 725735500635080000 , ending with 4 zeros.
Factorial(43) in base $\mathbf{2 \times 1 0 ^ { \wedge }} \mathbf{1}=20$ can be written
59HHHFECFCCEGH5G7I7A3A8G88F8CD8G000000000, ending with 9 zeros.
What about working with serious constraints and tricky cases ?
Factorial(\mathbf{N}) will be a huge one, the base will be dummy too and have the special form : $\mathbf{B} \times 10^{\wedge} \mathbf{E}$.

Input

The input begins with the number T of test cases in a single line.
In each of the next T lines there are three integers: N, B, E.

Output

For each test case, print the number of zeros at the end of Factorial (N) written in base $B \times 10^{\wedge} E$.

Example

Input:

3
1990
4321
1000010010

Output:

4
9
208

Constraints

$1<=$ T < 2000
$1<=N<10^{\wedge} 1000$
$1<=B<10^{\wedge} 9$
$0<=\mathrm{E}<10^{\wedge} 9$

Informations

Don't worry about the 'special' base 1 ($B=1$ and $E=0$), it is absent from input.
About distribution : random input (N : log-uniform, B : uniform, E : uniform) in their range. Some tricky cases are added.
It is recommended to solve FACTBASE first, and find a way to solve FCTRL much faster than common solutions.
Time limit is $\times 12 \mathrm{my}$ best Python3 time, or $\times 1.2 \mathrm{my}$ "basic" one.

