Factorial vs Power

Consider two integer sequences $\mathbf{f}(\mathbf{n})=\mathbf{n}$! and $\mathbf{g}(\mathbf{n})=\mathbf{a}^{\mathbf{n}}$, where \mathbf{n} is a positive integer. For any integer $\mathbf{a}>\mathbf{1}$ the second sequence is greater than the first for a finite number of values. But starting from some integer $\mathbf{k}, \mathbf{f}(\mathbf{n})$ is greater than $\mathbf{g (n)}$ for all $\mathbf{n}>=\mathbf{k}$. You are to find the least positive value of \mathbf{n} for which $\mathbf{f}(\mathbf{n})>\mathbf{g}(\mathbf{n})$, for a given positive integer $\mathbf{a}>\mathbf{1}$.

Input

The first line of the input contains number \mathbf{t} - the amount of tests. Then \mathbf{t} test descriptions follow. Each test consist of a single number a.

Constraints

$$
\begin{aligned}
& 1<=\mathbf{t}<=100000 \\
& 2<=\mathbf{a}<=10^{6}
\end{aligned}
$$

Output

For each test print the least positive value of \mathbf{n} for which $\mathbf{f (n)} \mathbf{>} \mathbf{g (n)}$.

Example

Input:

3
2
3
4

Output:

4
7
9

