Factorial vs Power

Consider two integer sequences f(n) = n! and $g(n) = a^n$, where n is a positive integer. For any integer a > 1 the second sequence is greater than the first for a finite number of values. But starting from some integer k, f(n) is greater than g(n) for all n > k. You are to find the least positive value of n for which f(n) > g(n), for a given positive integer n in n in

Input

The first line of the input contains number \mathbf{t} – the amount of tests. Then \mathbf{t} test descriptions follow. Each test consist of a single number \mathbf{a} .

Constraints

 $1 \le t \le 100000$ $2 \le a \le 10^6$

Output

For each test print the least positive value of \mathbf{n} for which $\mathbf{f}(\mathbf{n}) > \mathbf{g}(\mathbf{n})$.

Example

Input:

3

2

3

4

Output:

4

7 9