Product of factorials (again)

For \boldsymbol{n} positive integer, let $\boldsymbol{F}(\boldsymbol{n})=1!\times 2!\times 3!\times 4!\times \ldots \times n!$, product of factorial(i) for i in [1..n],
For \boldsymbol{p} a prime number, and \boldsymbol{n} an integer, and let $\boldsymbol{V}(\boldsymbol{p}, \boldsymbol{n})=\boldsymbol{\operatorname { m a x }}\left(\left\{i>=0\right.\right.$ integer, such that $\boldsymbol{p}^{\boldsymbol{\wedge} \boldsymbol{i}}$ divides $F(n)\}$).

Input

The first line of input contains an integer \boldsymbol{T}, the number of test cases.
On each of the next \boldsymbol{T} lines, your are given two integers \boldsymbol{p} a prime number, and \boldsymbol{n}.

Output

For each test case, you have to print $\boldsymbol{V}(\mathbf{p}, \boldsymbol{n})$.

Example

Input:
2
23
34
Output:
2
2

Constraints

```
0<T<10^5
1<p<10^18, a prime number
0<n<10^18
```

\boldsymbol{p} and \boldsymbol{n} are log-uniform independent randomly distributed.
Four lines of Python code can get AC in half the time limit. (Edit 2017-02-11, after compiler changes)
;-) Have fun.

