Counting Expressions

Count the number of distinct expressions involving n different operands $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc. Only operators,+- , ${ }^{*}$, / and parentheses are permitted. Single minus operator (for ex. -a*b) is not allowed.

Two expression are distinct if for some valid input values (i.e. You won't divide some number by zero) $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots$, the two expressions leads to different results. For example, $a / b / c$ and $a /\left(b^{*} c\right)$ are the same expressions, but $a / b+c$ and $a /(b+c)$ are not.

Input

Multiply test cases. For each test case:
A single line - $n .(1<=n<=50)$.
Input terminates by a single zero.

Output

For each test case:
The number of different expressions, modulo 499999999999993.

Example

Input:
3
0
Output:
68
If you find the constraints is too small in this problem, try problem EXPR4.

