Enumeration of rationals

It is well known that rational numbers form a countable set. Hence the set of rational numbers in the open interval $(0,1)$ also form a countable set.

Here we enumerate the rationals in $(0,1)$ in the following fashion. First, every rational is expressed in the lowest terms : ie, as p/q where p and q are positive integers with no common factor other than one. Then we sort the fractions in the ascending order of $p+q$. In case of a tie, the smaller fraction comes first.

The first few terms in this enumeration are $1 / 2,1 / 3,1 / 4,2 / 3,1 / 5,1 / 6,2 / 5 \ldots$
Given a natural number N , find the numerator and denominator of the Nth term in the enumeration.

Input

The first line of the input contains $T(\leq 1000)$, the number of test cases. This is followed by T lines, each containing an integer $\mathrm{N}\left(\leq 10^{11}\right)$.

Output

For each value of N , output separated by space the numerator and denominator (in lowest terms) of the Nth fraction in the enumeration

Example

Input:
2
3
6

Output:

14
16

