Enough of analyzing, let's play

All of must you know the game of Nim. For those who don't know, I will describe the game in brief:

There are two players and there are \mathbf{N} piles. Each pile contains some stones. Player 1 takes the first turn, than player 2, than again player 1 and so on. At each turn, the player chooses any ONE pile, and removes at least one stone from it. The player who makes the last move wins.

Now given N piles, your task is to find the number of ways Player 1 can start the game so that after his first move, he is in the winning position. That means after Player 1 has removed some stones from any ONE pile, he will surely win the game if he plays optimally no matter how well Player 2 plays the game.

Input

Input starts with an integer $\mathbf{T}(\mathbf{1 0 0 0})$, denoting the number of test cases.
Each case starts with an integer $\mathbf{N}(\mathbf{1} \mathbf{N} \leq \mathbf{1 0 0 0})$. The next line contains N integers all less than $\mathbf{1 0 0 0}$. The $\mathrm{i}^{\text {th }}$ integer denotes the number of stones in the $\mathrm{i}^{\text {th }}$ pile.

Output

For each case, print the desired result.

Example

Input:

2

3
11158

3

11157
Output:
Case 1: 3
Case 2: 3

