Huge Pascal triangle

Given \boldsymbol{P} a prime number, and \boldsymbol{N} an integer, Dukkar found a really fast way to compute how many numbers are divisible by \boldsymbol{P} on the $\boldsymbol{N}^{\text {th }}$ row of the Pascal triangle. Now the task will be much harder : it's for all the \boldsymbol{N} first rows.
Moreover \boldsymbol{N} will be a giant number, given in base \boldsymbol{P} for convenience.

Input

The first line of input contains an integer \boldsymbol{T}, the number of test cases. Follow $2 \times \boldsymbol{T}$ lines.
For each test case, on the first line your are given two integers \boldsymbol{P} and \boldsymbol{k}.
On the second line you are given \boldsymbol{k} integers : the digits of \boldsymbol{N} in base \boldsymbol{P}.
$N=a_{0} \times P^{0}+\ldots+a_{i} \times P^{i}+\ldots+a_{k-1} \times P^{k-1}$

Output

For each test case, you have to print the number of numbers in all the first \boldsymbol{N} rows of the Pascal triangle that are divisible by \boldsymbol{P}. As the answer could not fit in a 64bit container, give your answer modulo 1000000007.

Example

Input:

3
52
01
52
11
73
202
Output:
0
4
2689

Explanations

For the first case, $N=0 \times 5^{0}+1 \times 5^{1}=5$. No numbers are divisible by 5 in the first 5 rows.
For the second case, $N=1 \times 5^{0}+1 \times 5^{1}=6$. Only 4 numbers are divisible by 5 in the first 6 rows.

1

11
121
1331
14641
15101051
For the third case, $N=2 \times 7^{0}+0 \times 7^{1}+2 \times 7^{2}=100$.

Constraints

$0<\mathrm{T}<300$
$0<\mathrm{P}<10^{\wedge} 9$, a prime number
$0<k<1000$
$0<=a_{i}<P, a_{k-1}>0$
For your information, my 300B-python3 code get AC in 3.03s with 11MB of memory print. My C-code get AC in 0.08 s with 1.6 MB of memory print.
Have fun ;-)
Edit(25/l/2015) With Cube cluster my C-time is 0.01 s and my PY3.4-time is 0.26 s .

