Divide Polygon (HARD)

This is hard version of DTPOLY.

Determine the number of ways to cut a convex polygon with **N** vertices if the only cuts allowed are from vertex to vertex, each cut divides exactly one polygon into exactly two polygons, and you must end up with exactly **K** polygons. Consider each vertex distinct. For example, there are three ways to cut a square - the two diagonals and not cutting at all - but only two ways to cut it to form 2 polygons, and only one way to cut it to form 1 polygon. The order of cuts does not matter. Since the number of ways can be very large, you should return the number taken modulo **M**.

Input

Input contains several test cases, i-th line consists of 3 integers: N_i (3 $\leq N_i$, $\Sigma N_i \leq 10^8$ over all test cases),

 K_i (1 $\leq K_i \leq N_i$ - 2) and M_i (1 $< M_i < 2^{60}$), all pairs (N_i , K_i) are different.

Output

On the i-th line print the number of different ways to cut the polygon with N_i vertices into K_i pieces modulo M_i .

Example

Input:

4 2 100 6 3 100 10000000 2 100000007 10000000 5000000 1000000014000000049

Output:

2 21 984650007 780127215155143528