Dynamically-Rooted Tree

You are given a rooted tree with N nodes, numbered from 1 to N . Initially node 1 is the root. Each node i has a weight $\mathrm{W}[i]$. You have to perform two types of operations:
"S a" - Find the sum of weights of node a's sub-tree nodes (including node a).
"R a" - Change root of the tree to \mathbf{a}.

Input

Line 1: $\mathrm{N}\left(1<=\mathrm{N}<=10^{5}\right)$, number of nodes.
Line 2: N space-separated integers, weights of nodes from 1 to N . i'th integer is $\mathrm{W}[\mathrm{i}]$ ($1<=\mathrm{W}[\mathrm{i}]<=$ 10^{9}).
Line 3: N -1 space-separated integers, \mathbf{i} 'th integer is the parent of node $\mathbf{i}+\mathbf{1}$.
Line 4: Q, the number of operations ($1<=Q<=10^{5}$).
Lines 5 .. 5+Q-1: Every line contains a space separated character and an integer. Character describes the type of the operation, and integer is the node number.

Output

For each operation of type ' S ', output the operations result in a separate line.

Example

Input:

5

21112
1122
3
S 2
R 2
S 1
Output:
4
3

