Divisiblity by 3

Divisiblity by 3 rule is pretty simple rule: Given a number sum the digits of number and check if sum is divisible by 3.If divisible then it is divisible by 3 else not divisible. Seems pretty simple but what if we want to extend this rule in binary representation!!

Given a binary representation we can again find if it is divisible by 3 or not. Making it little bit interesting what if only length of binary representation of a number is given say n.

Now can we find how many numbers exist in decimal form(base 10) such that when converted into binary (base 2)
form has n length and is divisible by 3 ?? $\left(1<=\mathrm{n}<2^{*} 10^{\wedge} 18\right)$

Input

Length of binary form: n

output

Print in new line the answer modulo 1000000007.

Example

Input:

1

2

Output:

1

2
Explanation: For $\mathrm{n}=2$ there are only 2 numbers divisible by 3 viz. 0 (00) and 3 (11) and having length 2 in binary form.
NOTE:There are multiple testfiles containing many testcases each so read till EOF.
Warnings: Leading zeros are allowed in binary representation and slower languages might require fast i / o. Take care.

