Distance

In this task let's consider distance between two positive integers defined as below.
Single operation is : multiplying some number by prime number or dividing some number by prime number (we can divide only when remainder is equal to 0)

Distance d between two numbers a, b is minimum number operations to convert one number to another.

For example d(69,42)=3
This distance is very similiar to well-known term "distance" in real human life:
$\mathrm{d}(\mathrm{a}, \mathrm{a})=0$, distance number to itself is 0
$d(a, b)=d(b, a)$ distance from $a->b$ is equal to $b->a$
$d(a, b)+d(b, c)>=d(a, c)$ triangle equation is true too
With given n number you have to determine for each i-th of those numbers closest number aj from set that
$\mathrm{i}!=\mathrm{j}$ and if there is many numbers with equal, smallest distance, you have to pick number with smallest index

Input

In first line - number $\mathrm{n}<=10^{\wedge} 5$.
In next n lines - i -th number. Every number is not greater than $10^{\wedge} 6$

Output

You have to output n lines.
I-th line should contain index of closest number (if there is many answers, please output smallest index)

Example

Input:
6

