Different Vectors

You are given set of \mathbf{N} vectors, each vector consists of \mathbf{K} integers. Vector ex equals ey iff there exist function bijection \mathbf{f} and integer \mathbf{r}, such that ex[i] $=f($ ey $[(i+r) \% K])$, for each in range $[0, K>$ Eg. $(1,2,2,3)==(22,3,4,22)$, with $r=2$ and $f(22)=2, f(3)=3$ and $f(4)=1$. But $(22,3,22,4)$ is not equal to $(1,2,2,3)$.

How many different vectors are there in set of N given vectors?
Constraints :
$\mathrm{n}<=10000$
$\mathrm{k}<=100$
vector values are from range $\left[0,10^{\wedge} 9\right]$

Input

First number contains $T(T<=10)$, number of test cases. Each test cases consists of following. First line consists of N and K. N lines follows, the i-th containing K integers describing i -th vector.

Output

Output one number, number of different vectors.

Input:

2
34
223422
1223
223224
55
33303
84440
11111
11861
13335

Output:

2
3

