Delta catheti II (Hard)

$(3,4,5)$ is a famous Pythagorean triple, it gives a quick answer to the question:
For a given integer \boldsymbol{d}, is there a Pythagorean triple $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ such that $\boldsymbol{b}-\boldsymbol{a}=\boldsymbol{d}$?
A solution is ($\mathbf{3 d} \mathbf{d} \mathbf{4 d}, \mathbf{5 d}$), and in fact one can easily prove that the set of solutions is infinite, and that there is an obvious total order on those solutions.
Given \boldsymbol{n}, you'll have to find the \boldsymbol{n} th term of the sequence of solutions.
Geometrically, it is the study of right triangles for which the difference of the catheti are equal to \boldsymbol{d}.

Input

The first line of input contains an integer \boldsymbol{T}, the number of test cases.
$2 T$ lines fallow. Each case is on two lines.
The first line of the case contains three integers $\boldsymbol{n}, \boldsymbol{d}, \boldsymbol{m}$.
The second line contains an integer L and $2 L$ other integers (p, e), which give the prime factorization of \boldsymbol{d} in standard format ($\mathrm{d}=$ product $\mathrm{p}^{\wedge} \mathrm{e}$).

Output

For each test case, compute the \boldsymbol{n} th term amongst the solutions $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ for the problem : $a^{2}+b^{2}=c^{2}$ with $\boldsymbol{b}-\boldsymbol{a}=\boldsymbol{d}$ and $0<a<b<c$.

As the answer could not fit in a 64-bit container, simply output your answer modulo \boldsymbol{m}.

Example

Input:

3
11235813
0
3211000
23171
911911
271171
Output:
345
6384105
531

Explanations

For the first case, the first solution is $(3,4,5)$, as $4-3=1$.
For the second case, the firsts solutions are:
$(15,36,39),(24,45,51),(63,84,105),(144,165,219),(195,216,291),(420,441,609), \ldots$ The third one is $(63,84,105)$.

For the third case, the first solutions are:
$(24,143,145),(49,168,175),(57,176,185),(85,204,221),(136,255,289),(180,299,349)$, (196, 315, 371), (261, 380, 461), (357, 476, 595), (481, 600, 769), (616, 735, 959), ...
The 9th solution is $(357,476,595)$, reduced modulo 11 , we get $(5,3,1)$.

Constraints

```
\(0<T<10^{\wedge} 4\)
\(0<\mathrm{n}<10^{\wedge} 18\)
\(0<d<10^{\wedge} 14\)
\(1<m<10^{\wedge} 9\)
```

\boldsymbol{d} is the product of two integers lower than $10^{\wedge} 7$.
n, d_{1}, d_{2}, m : Uniform randomly chosen in their range.
Those constraints are set to allow C-like users to work only with 64bit containers.
For your information, my 3kB-python3 code get AC in 2.80 s with 12MB of memory print. It should be much faster with a compiled language.
Warning : It's my hardest problem. Have fun ;-)

