NOS

Find the number of strings of length " N " made up of only 3 characters - $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that "a" occurs at least "min_a" times and at most "max_a" times, "b" occurs at least "min_b" times and at most "max_b" times and "c" occurs at least "min_c" times and at most "max_c" times. Note that all permutations of same string count as 1 , so "abc" is same as "bac".

Input

First line gives T, the number of test cases.
Each test case has an integer " N " on first line.
Next line contains 2 integers, min_a and max_a.
Next line contains 2 integers, min_b and max_b.
Next line contains 2 integers, min_c and max_c.

Output

Output T lines, each containing the required answer modulo $10^{\wedge} 9+7$.

Constraints

$1<=T<=1000$
$1<=\mathrm{N}<=10^{\wedge} 9$
$1<=$ min_a <= max_a <= 10^9
$1<=$ min_b $<=$ max_b $<=10^{\wedge} 9$
$1<=$ min_c $<=\max _c<=10^{\wedge} 9$

Example

Input:

1
3
11
11
11

Output:

1

