G Force

Prime(\mathbf{n}) is defined as number of primes less than equal to \mathbf{n}.
Totient(\mathbf{n}) is defined as the number of positive integers less than or equal to \mathbf{n} that are relatively prime to \mathbf{n}.
$\mathrm{F}(\mathbf{n})=\operatorname{Prime}(\mathbf{n})-\operatorname{Totient}(\mathbf{n})$
and we don't like negative values, so if $F(\mathbf{n})<0$, consider it as 0 .
$\mathrm{G}(\mathrm{n})=\operatorname{Totient}(\mathbf{n})^{\wedge}($ Factorial $(\mathrm{F}(\mathbf{n})))$

You are given a number \mathbf{n}. You have to output $G(\mathbf{n}) \% 10^{\wedge} 9+7$.
Input
First line consists of \mathbf{T}, the number of test cases.
Each of the next T lines contains one integer \mathbf{n}.

Output

Output T lines each line containing the value of function $G(\mathbf{n}) \% 10^{\wedge} 9+7$

Constraints

$1<=\mathbf{T}<=100$
$1<=\mathbf{n}<=10000000$

Example

Input:
1
2

Output:
1

