Descending Alternating Sums

Given an array \mathbf{A} of \mathbf{k} integers (not necessarily distinct), we define the descending alternating sum of this array, denoted $\mathbf{F}(\mathbf{A})$ the following way. First, we sort the array in descending order. Suppose the elements, after sorting, are $\mathbf{A}_{\mathbf{1}} \geq \mathbf{A}_{\mathbf{2}} \geq \ldots \geq \mathbf{A}_{\mathbf{k}}$ respectively. Then the descending alternating sum of array \mathbf{A} is

$$
F(A)=A_{1}-A_{2}+A_{3}-\ldots+(-1)^{k+1} A_{k}
$$

For example, if $\mathbf{A}=[5,-3,8,2,0,-5]$ then after sorting it in descending order, we find $\mathbf{A}=[8,5,2$, $0,-3,-5]$. So the descending alternating sum of this array is $8-5+2-0+(-3)-(-5)=7$. In particular, the descending alternating sum of an empty array is $\mathbf{0}$.

You are given an array A of n integers where $1 \leq n \leq 10^{5}$ and $\left|A_{i}\right| \leq 10^{18}$. You have to print the sum of the descending alternating sums of all subsets of this array \mathbf{A} (there are $\mathbf{2}^{\mathrm{n}}$ of them) modulo $\mathbf{M}=10^{9}+\mathbf{7}$. In other words, if the subsets of array \mathbf{A} are $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}, \ldots, \mathbf{S}_{\mathbf{2}^{n}}$ then you have to print the sum

$$
F\left(S_{1}\right)+F\left(S_{2}\right)+\ldots+F\left(S_{2}\right) \text { modulo } M=10^{9}+7
$$

Note: we consider some integer modulo a positive integer to be non-negative. In the other words, the output \mathbf{R} must satisfy the inequality $\mathbf{0} \leq \mathbf{R}<\mathbf{M}$.

Input

The first line of the input file contains a single integer \mathbf{n}, denoting the size of the array \mathbf{A}.
The second line contains \mathbf{n} integers $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \ldots, \mathbf{A}_{\mathbf{n}}$, the elements of the array \mathbf{A}.

Output

Print a single integer, the sum of descending alternating sums of all subsets of the array \mathbf{A}.

Example

Input:
3
-193
Output:
36

