SUBCUBE EDGE LCM

My Friend Deepan Gupta gave me a problem on 3-D and said put it on SPOJ to have some peop fun. You are given a Cube \mathbf{M} with size $\mathbf{N}^{*} \mathbf{N}^{*} \mathbf{N}$, find the subcube \mathbf{S} of \mathbf{M}, having dimention $\mathbf{E}^{*} E^{*} E$ such that \mathbf{E} is minimum and sum of all the elements of this subcube is greater than or equal to W. But i found this problem easy and also there are similar problems that already exists on SPOJ. So i made it twist. Now If no such cube exists, print -1. Else if exists with size E, then find the smallest k such that $-\mathbf{n}$ divides $\mathbf{I c m}(\mathbf{m}, k) ; \mathbf{m}$ divides $\mathbf{I c m}(\mathbf{n}, \mathbf{k})$, where $\mathbf{n = E \wedge 4 , m = E \wedge 4 + 1 . ~}$

Constraints : $0<=\mathrm{M}[\mathrm{i}][\mathrm{j}][\mathrm{k}]<=10^{\wedge} 9,1<=\mathrm{i}, \mathrm{j}, \mathrm{k}<=\mathrm{N}, 0<=\mathrm{W}<=10^{\wedge} 15,1<=\mathrm{N}<=100$.

Input :

First line contains N,W, size of Cube and Cut-off weight respectively. Next lines contains N matrix. First N lines contains 1st bottom layer of Cube M , next N lines 2nd bottom layer of cube M and so on. Each layer has dimention $N^{*} N$.

Output:

Print output as stated Above.

Examples:

Input:
315
123
234
345
234
345
456
567
678
789

Output :

272

Input:
31000
123
234
345
234
345
456
567
678
789

Output :

