Camels

Bob likes to draw camels: with a single hump, two humps, three humps, etc. He draws a camel by connecting points on a coordinate plane. Now he's drawing camels with t humps,representing them as polylines in the plane. Each polyline consists of n vertices withcoordinates $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$. The first vertex has a coordinate $x_{1}=1$, the second- $x_{2}=2$, etc. Coordinates y_{i} might be any, but should satisfy the following conditions:

- there should be t humps precisely, i.e. such indexes $j(2 \leq j \leq n-1)$, so that $y_{j-1}<y_{j}>y_{j+1}$,
- there should be precisely $t-1$ such indexes $j(2 \leq j \leq n-1)$, so that $y_{j-1}>y_{j}<y_{j+1}$,
- no segment of a polyline should be parallel to the $O x$-axis,
- all y_{i} are integers between 1 and 4 .

For a series of his drawings of camels with t humps Bob wants to buy a notebook, but he doesn'tknow how many pages he will need. Output the amount of different polylines that can be drawn to represent camels with t humps for a given number n.

Input

The first line of input contains the number of testcases, Ntest.
Each testcase contains a pair of integers n and $t(3 \leq n \leq 20,1 \leq t \leq 10)$.

Output

For each testcase ,output the required amount of camels with t humps.

Example

Input:

1
61
Output:
6

Note

In the first sample test sequences of y-coordinates for six camels are: 123421, 123431, 123432, 124321, 134321 и 234321 (each digit corresponds to one value of y_{i}).

