Counting Points In Rectangles

You're given a set **P** of N points in the plane, and a set **R** of M rectangles (also in the plane \mathfrak{S}).

For each rectangle from **R** determine the number of points from **P** that lie inside it or on its sides.

Input

The first line of input contains the integer N. $(1 \le N \le 20000)$

Each of the next *N* lines contains a pair of integers (x_{i, y_i}) , the coordinates of the i-th point. $(0 \le x_{i, y_i} \le 200000)$

The next line of input contains the integer M. $(1 \le M \le 20000)$

Each of the next *M* lines contains four integers $(x_{1i}, y_{1i}, x_{2i}, y_{2i})$, specifying two opposite vertices of the i-th rectangle.

 $(0 \le x_{1i} < x_{2i} \le 200000, 0 \le y_{1i} < y_{2i} \le 200000)$

Output

Output exactly *M* lines, i-th containing the number of points in the i-th rectangle.

Example

Input:

Output:

3

4