Counting Points In Rectangles

You're given a set \mathbf{P} of N points in the plane, and a set \mathbf{R} of M rectangles (also in the plane
For each rectangle from \mathbf{R} determine the number of points from \mathbf{P} that lie inside it or on its sides.

Input

The first line of input contains the integer $N .(1 \leq N \leq 200000)$
Each of the next N lines contains a pair of integers (x_{i}, y_{i}), the coordinates of the i-th point. ($0 \leq x_{i}$, $y_{i} \leq 200000$)

The next line of input contains the integer M . $(1 \leq M \leq 200000)$
Each of the next M lines contains four integers ($x_{1 i,} y_{1 i, x_{2 i}} y_{2}$), specifying two opposite vertices of the i-th rectangle.
$\left(0 \leq x_{1 i}<x_{2 i} \leq 200000,0 \leq y_{1 i}<y_{2 i} \leq 200000\right)$

Output

Output exactly M lines, i -th containing the number of points in the i -th rectangle.

Example

Input:

4
00
13
27
33
2
0033
0037

Output:

3
4

