Cow Photographs

Farmer John wants to take a picture of his entire herd of $N(1<=N<=100,000)$ cows conveniently numbered $1 . . \mathrm{N}$ so he can show off to his friends.

On picture day, the cows run to form a single line in some arbitrary order with position i containing cow c_i $(1<=$ c_i $<=\mathrm{N})$. Farmer John has his own ideas about how the cows should line up.

FJ thinks cow i may stand only to the left of cow $\mathrm{i}+1$ (for all $\mathrm{i}, 1<=\mathrm{i}<=\mathrm{N}-1$) and that cow N may only stand to the left of Cow 1 . Of course, no cow will stand to the left of the first (leftmost) cow in the line.

The cows are hungry for the promised post-photo dinner, so Farmer John wants to take the picture as quickly as possible. Cows are not great at following directions, so he will only choose a pair of adjacent cows and have them switch places once per minute. How quickly is Farmer John able to get them into some acceptable order?

Consider a set of 5 cows whose initial line-up looks like this:
Left Right
35421

He can first swap the second pair of cows:

34521
and then swap the rightmost pair:

34512
to yield an acceptable line-up that required but two minutes of cow swapping.

Input

Line 1: A single integer: N
Lines $2 . . N+1$: Line $\mathrm{i}+1$ contains the number of the i -th cow in line: $\mathrm{c}_{\mathrm{i}} \mathrm{i}$

Output

Line 1: The minimum amount of time, in minutes, that it takes Farmer John to get the cows into some appropriate order.

Example

Output:

