Counting Pascal

Pascal's triangle is a common figure in combinatorics. It is a triangle formed by rows of integers. The top row contains a single 1. Each new row has one element more than the previous one and is formed as follows: the leftmost and rightmost values are 1 , while each of the other values is the sum of the two values above it. Here we depict the first 7 rows of the triangle.

Pascal's triangle is infinite, of course, and contains the value 1 an unbounded number of times. However, any other value appears a finite number of times in the triangle. In this problem you are given an integer $\mathrm{K} \geq 2$. Your task is to calculate the number of values in the triangle that are different from 1 and less than or equal to K.

Input

The input contains several test cases. Each test case is described in a single line that contains an integer $K\left(2 \leq K \leq 10^{9}\right)$. The last line of the input contains a single -1 and should not be processed as a test case.

Output

For each test case output a single line with an integer indicating the number of values in Pascal's triangle that are different from 1 and less than or equal to K .

Example

Input:

2
6
-1

Output:

