Linear Diophantine Equation

Given a positive integer \boldsymbol{M} and \boldsymbol{N} positive integers $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots, \boldsymbol{a}_{\boldsymbol{N}}$. Count the number of nonnegative integer tuples $\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \ldots, \boldsymbol{x}_{\boldsymbol{N}}\right)$ such that:
$a_{1}{ }^{*} x_{1}+a_{2}{ }^{*} x_{2}+\ldots+a_{N}{ }^{*} x_{N}=M$

Input

- The first line contains two integers \boldsymbol{N} and \boldsymbol{M}.
- The second line contains \boldsymbol{N} integers $\mathbf{a}_{1}, a_{2}, \ldots, a_{N}$ respectively.

Output

- Output only one integer, the number of asked tuples modulo 998244353.

Constrains

- $1 \leq N \leq 60000$
- $1 \leq M \leq 10^{18}$
- $1 \leq a_{i} \leq 60000$
- $1 \leq a_{1}+a_{2}+\ldots+a_{N} \leq 60000$

Example

Input:

310
325

Output:

4

Input:
5100000
13461000

Output:

865762992

Note

- My solution runs in less than 0.8 s for each input file, 6.3 s in total.

